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Abstract

In this work we present an algorithm to perform algorithmic differ-
entiation in the context of quantum computing. For the derivative of
the arbitrary composite function fogo...oh, three n-qubit states are
sufficient, where n refers to the quantum computer precision. Namely,
with these 3 n-qubit states we construct a set of operation which can
be iteratively applied in such a way to calculate the derivative of any
composite function. For the sum, f(z) + g(x) + ... + h(z) or the
product f(x) - g(x) - ...- h(z) one needs at least 6 n-qubit states, if a
re-initialization is implemented. Since the implementation of elemen-
tary functions is already possible on quantum computers, the scheme
that we propose can be easily applied. Moreover, since some steps
(such as the CNOT operator) can (or will be) faster on a quantum
computer than on a classical one, the applied procedure may lead in
the (near or far) future to quantum algorithmic differentiation being
more advantageous than its classical counterpart.

!The analysis, views and opinions presented in this paper are our own and do not
represent the opinions of any firm.
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1 Introduction

Algorithmic differentiation (also known as automatic or computational dif-
ferentiation, hereafter AD) [1] 2, [3] has gained particular attention in the last
years due to its practical use in finance, in particular in the context of pricing
financial derivatives [4], [5], as well as in data science and machine learning
[6].

In finance, AD is used to compute sensitivities (or Greeks) of the price of
financial instruments with respect to the underlying drivers both accurately
(to machine precision) and efficiently [7, [ [4]. The advantage of AD w.r.t.
the standard numerical differentiation is particularly evident when dealing
with complex financial instrument which require numerical pricing methods,
e.g. Monte Carlo. In fact, the calculation of price sensitivities with numer-
ical differentiation involves perturbing the underlying price drivers in turn,
repeating simulations and getting finite-difference approximations. The com-
putational effort thus becomes very significant when the financial instrument
has a large number of drivers, as is typically the case for the sophisticated
models for which Monte Carlo simulations are used in practice.

In data science, a particular case of algorithmic differentiation, known as
backpropagation, is used in Artificial Neural Network training to calculate
gradients of the loss function with respect to the weights of the network ([6]
and refs. therein). With the advance of deep learning, the need of increased
efficiency and precision in the calculation of the gradients arose due to the
large number of layers used to build up the networks.

Currently, several attempts have been made to introduce the concept and
framework of differentiation to the quantum computing world [9} 10} 1T} 12].
In fact, the progresses made in creating optimization, simulations [13, [14],
financial applications [15] [16], quantum chemistry [11], and machine learning
algorithms [17, 18] 19 20] on a quantum computer require the calculation of
derivatives.

Until now, however, to the best of our knowledge no algorithm for AD
has been proposed in the context of quantum computation. However, the
advances in scientific computing algorithms for quantum computers [21], 22]
23, 241, 25], 26l 27] allow for the definition of primitive functions which can
be used for algorithmic differentiation. Inspired by this approach, we pro-
pose in this paper a framework to implement algorithmic differentiation on
a quantum computer, the quantum algorithmic differentiation framework.
Two versions are proposed: a fully quantum version, with no need of a hy-



brid quantum-classical system, and one in which classical ancilla registers
are used for a more practical implementation. The proposed framework al-
lows for the calculation of a composite function and its derivative in a given
point at quantum machine precision. The precision of the quantum algorith-
mic differentiation depends on the number of available qubits to represent a
floating number on the quantum computer. This currently poses difficulties
in implementing this algorithm (as well as many other currently proposed
algorithms) since current quantum hardware development does not allow for
large qubits. Nevertheless, this paper is intended to extend the available al-
gorithms of scientific calculation on quantum computer and prompt possible
extension of optimization and machine learning quantum algorithms with
quantum algorithmic differentiation.

As we shall explain in the text, the minimal number of qubits needed
to evaluate the derivative of an arbitrary composed function of elementary
functions amounts 3n, where n is the quantum computer precision. When
including the sum and/or the products of elementary functions, the minimal
number of needed qubits is 6n, if a re initialization procedure is employed.

The paper is structured as follows: in sec. [2 the classical algorithmic
differentiation is introduced. Sec. [ presents a translation of the classical
framework for algorithmic differentiation to the quantum case. Here the
operators and procedures to calculate a function and its derivative are intro-
duced. Sec. [ formalizes the results from the previous section and outlines
the algorithm to calculate the derivative of a composite function at a given
point (represented by a quantum state of n-qubits). Finally in Sec. [ we
summarize our findings and outline possible future developments.

2 Algorithmic differentiation

Algorithmic differentiation (AD) [2],[8] uses exact formulas along with floating-
point values to calculate the derivative of a composite function starting from
known elementary (or primitive) functions. It involves no approximation er-
ror as in numerical differentiation. AD is a third alternative to symbolic and
numerical differentiation, and is also called computational differentiation or
automatic differentiation.

The basic idea behind AD is to calculate the derivative of each a primitive
function in an iterative way, and store at each step a tuple containing the
value of the function and of the derivative, (val, der). For sake of simplicity



we shall call this tuple the valder object.

More precisely, AD corresponds to the computational implementation of
the chain rule. In fact, by applying the chain rule repeatedly to primitive
functions (and arithmetic operations), derivatives of arbitrary order of com-
posite functions can be computed automatically.

An example can be used to clarify it. Consider the function f(x) =
2? - sin(log(r)). Assume we want to calculate the derivative of this function
at xg. Let us consider the valder object (zo,1) to input our algorithm.

The function f(x) can be rewritten as:

flz) = u(z)- h(log(z)) (1)

= u(z) - h(w(z)). (2)

We can now split and execute the calculation of the derivative of f by
calculating the derivatives of each component, ¢(z). The algorithm is based
on a series of iterations that take as input a valder object (v, d) and define
a new valder object as (c(v),c (v) - d), where ¢(x) is the component we are

looking at.
For the function f(z) we have:

e define the input valder tuple (z¢,1).
o for u(x):

— calculate the derivative of u at xy and define a new wvalder object
containing the value of the function u(zg) and derivative u'(zg) - 1
(where 1 is the input value from the input tuple).

— store the valder tuple : (u(xg),u'(x0)) = (valy, dery)
e for h(w(z)):

— calculate the values of w(zg) and w'(xg).

— define the valder tuple (w(xg),w'(xo) - 1) = (y,d) to be the input
for the next step.

— calculate the values of the function h(y) and derivative h/(y).
— define the wvalder tuple (h(y), M (y) - d) = (vals, ders)
e Finally calculate the derivative of the product from the two obtained

tuples as:
(valy x valy, valy x dery + vals * dery).
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This example shows that from the knowledge of primitive functions and
their derivatives we can calculate the derivative of a complex function without
the error associated to numerical differentiation.

It can be shown that for practical applications the following primitive
functions are enough to handle most typical situations: exp(u), log(u), sqrt(u),
sin(u), cos(u), tan(u), asin(u), atan(u). Further the following operations are
needed: plus(u,v), minus(u), times(u,v), reciprocal(u).

For all of the above mentioned primitive functions an implementation
in terms of quantum circuits already exists [24, 26, 27]. Therefore in the
following we develop a method to perform AD on a quantum computer.

For sake of simplicity we shall focus on the algorithmic differentiation
in the forward mode. See [0] for a review of the forward and reverse mode
implementations of algorithmic differentiation.

3 Quantum algorithmic differentiation of a
composite function

Consider three n-qubits states, |s):
[5) = [sm) ® [8m-1) @ ..|s0) @ [5-1) @ ... ® |8mn) (3)

The first m (where m < n) terms are the integer part and the last n —m
terms are the fractional part of a number.

Let v be a number in R, and |v) the n-qubit representation of the number
with precision %%m

Assume we want to calculate the derivative of a function f(x) at x.

The building blocks of the quantum algorithmic differentiation are the

following;:

e Transfer or Copy operator, C: a series of CNOT between the first and
second n-qubit states.

e Reset procedure, R: a procedure to reset the second n-qubit to 0 (as a
value, therefore |s) = |00...0)).

e AD(f): this operator calculates the value of a function and its deriva-
tive at a point v, respectively f(v) and f’(v), for a set of known func-
tions (e.g. sin, log, exp, etc.).

In the following we describe the outlined building blocks.

b}



Transfer or Copy operator

The transfer (or copy) operator is an extension of the controlled-Not (CNOT)
operator to the tensor product of two qubits. Such operator acts as a copy,
or transfer, of the controlled qubit onto the target qubit, with the condition
that the latter state is set to |0) (or |00...0)). In case the state |s) is built up
of n-qubits:

|2) 2)
0) —b |a)
10) D 1)
0) S— [2)

for any a,b and z =0, 1.

In fact, in the proposed algorithm the control qubit will correspond to
the value of a function at a point, while the target will be set to 0. Therefore
the goal of the transfer operator will be to copy the value of the function at
the point onto the second qubit.

Quite interestingly, there are ways to realize a fast CNOT obtained by
employing Quantum Zeno dynamics [28], thus possibly rendering the whole
procedure that we are about to describe more efficient and possibly even
faster than a standard classical computation.

Reset procedure

In order to use the described transfer operator, the second n-qubit state needs
to be set to zero (|0) or |00...0)). After the application of the transfer oper-
ator, such state will be in general in a non-zero state, therefore a procedure
to reset such state to zero is needed.

In general, one possibility would be to revert the unitary operations ap-
plied on the state. However, this could affect also states that we do not
necessarily want to reset if operators across tensor space of several qubits are
used. The following two possibilities are therefore considered:

e Fully quantum implementation: prepare as many ancilla zero states (|0)
or |00...0)) as needed for the calculation. Whenever needed to reset the
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state, use a Swap gate to swap the non-zero qubit with a state set to
ZEro.

e Hybrid implementation: use a single classical bit ¢q. Perform a measure
on the standard Z-basis and measure it on ¢q. Apply a bit-flip operator
(multidimensional extension of ox). If the classical bit is zero apply
again a bit-flip operator. The qubit is then back in the zero state.

For sake of readability, in the following we will indicate the procedure
with R, without specifying which of the the two procedures is applied.

AD(-) operators

The operator AD(f) is associated to a particular primitive function (e.g.
sin or log). Implementations for such functions are available in [27] and ref.
therein. For each function f(z), the operator takes as input three n-qubit
states, |a), |b), |c) and outputs a state with the following 3 n-qubit states:
|f(a)), |f'(b)),|f (D) x c). The operator AD(f) is built upon two operators:
the first, f ® f’, is represented by a multigate, in which one block acts on
the first n-qubit state, |a), to calculate |f(a)), and another block acts on |b)
to calculate |f’(b)); the second operator is a product operator, in which the
product of the last two n-qubit states is calculated, |c¢ - f'(b)). The definition
of the latter operator can be found in [27]. In symbols, for the primitive
function f(z) the operator AD(f) looks like:

@) — If(a)
b ey o
D e )

In the quantum circuit above, the AD(f) operator is indicated by the
dashed line.

Once this operator has been defined, the idea of algorithmic differentiation
can then be applied as follows. Consider the composite function go f. The
first iteration of the algorithmic differentiation is to calculate the derivative
of f at xy. It is then possible to calculate the derivative of go f in an iterative
way. Let us consider the following input state:

|s) = |zo) @ 10) @ 1) (4)

7



where
e [0) = |00...0),
e |1) is the ket which represents the integer number 1.

In analogy with the tuple used in Section 2] we call this state the valder

state.
Let us now apply the following algorithm:

e apply the copy operator to the kets |zo) and |0).

e apply the AD(f) operator to the first and second kets (both in state
|zo)) and to the third ket in state |1).

Equivalently in symbols:

o) — — lz0) — | f (o))
C
0) —1_F— [z0) — AD(f) [—f'(x0))—Reset)— [0)
1) L-[f"(z0))
So the output of the first iteration is the state:
s) = |f(z0)) @ |0) ®|f'(z0)) (5)
= |val) ® |0) ® |der) (6)

where for ease of notation we defined the kets |val) and |der).
Let us now execute the same iteration, in which the only difference is that
we use the AD(-) operator associated to the function g:

e apply the copy operator to the kets |val) and |0).

e apply the AD(g) operator (in this case associated to g) to the first and
second kets (both in state |val)) and to the third ket in state |der).

Equivalently in symbols:

lval) —] : lg(val))
C \

0) - jval) — AD(g) |—g/(val)—(Reset— [0)

|der - ¢'(val))




Note that in this way we calculated the derivative of the function g o f
at Zo.

One can extend this procedure to an arbitrary number of composite func-
tions. To this end, let us define the set of the operators (dashed box) in the
previous circuit as the unit B,, where B stays for block and g refers to the
function g(x). The block B, is represented by the dashed line in the previous
circuit.

It is the clear that, if we intend to evaluate the derivative of the arbitrary
composite function fogo...oh, we have to apply the composition of blocks
B¢ x By x ... x By. The initial input on the left is represented by the 3n-qubit
state |zg) |0) [1) and the output on the right is

9. @) o

The value in the third n-qubit state is the derivative of the composite function
that we were looking for. Note, since the derivative of elementary functions
can be calculated on quantum computers, the corresponding boxes can be
constructed. Then, the evaluation of the derivative of an arbitrary composite
function is a straightforward (and systematic) application of our approach.
This is one of the main outcomes of the present paper.

£ (g(--2((20))) |0)

4 Quantum algorithmic differentiation: the
framework

In this section we merge the results from the previous two sections to define
a quantum algorithmic differentiation (¢.AD) framework.

Let us first define the functions needed for ¢ AD in terms of a symbolic
class:

class QuantumAglorithmicDifferentiator()
attributes
valder’ QuantumState [s) = |v) ® |0) ® |d)
methods
arithmetic operations
ADplus(|sl),|s2))
return |vl +v2) ® |0) ® |d1 + d2)

9



ADminus (|s))
return |—v) ® |0) ® |—d)
ADtimes(|sl),|s2))
return |[vl *02) ® |0) ® |d1 * v2 + v1 * d2)
ADreciprocal(]s))
return |1/v) ® [0) ® |—1/v? * d)
primitive functions
ADexp(|s))
return |exp(v)) ® |0) @ |exp(v) * d)
ADlog(|s))
return |log(v)) ® |0) ® |1/v * d)
ADsqrt (|s))
return |/v) ® |0) ® [0.5/y/v * d)

ADsin(|s))

return [sin(v)) ® [0) @ |cos(v) * d)
ADcos(]s))

return [cos(v)) ® |0) ® |—sin(v) * d)
ADtan(|s))

return [tan(v)) ® |0) ® |1/ cos?(v) * d)
ADarcsin(|s))

return |arcsin(v)) ® |0) @ [1/v1—v v *d)
ADarctan(|s))

return |arctan(v)) ® [0) ® |[1/(1 4+ v *v) * d)

The functions above defined are in fact operators acting on the quantum
(valder) states |s) = |v)®|0)®|d). Note that for sake of simplicity, we assume
that the reset procedure R is always applied at the end of the application of
the AD(-) operators.

In the cases above in which arithmetic operations sum and products are
considered, the input consists of two array of three n-qubit states, that is
6n qubits in total. The outcome outlined above consists of 3n qubits only,
which can be identified with the new upper 3n-qubit state. The lower 3n-
qubit state is irrelevant for the sum of two functions, but may become useful
if more functions needed to be summed or multiplied.

If we intend to calculate the derivative of the sum f(z) + g(x) + h(z) at
the point xy, we can consider 3 sets of 3n-qubits (9n qubits in total). We may
then consider 3 initial states |zo) |0) |1) and apply By on the first, B, on the
second, and By, on the third, obtaining | f(z)) [0) | f'(z0)) , |g(x0)) [0) |¢'(x0)) ,
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and |h(zg)) |0) |W'(z0)). One can then sum the first two of them, getting

|f (z0) + (o)) |0} [ (o) + ¢'(w0)) (8)

and summing this with the last array, |h(zo)) |0) |h'(z0)) , which leads to the
desired result

| f (o) + g(20) + h(20)) 10) | f (20) + ¢'(20) + A (w0)) - 9)

As usual, the required derivative is contained in the third qubit of the pre-
vious expression. This procedure, for k functions, requires 3n - k qubits (or
equivalently 3k n-qubit states).

Alternatively, one may reduce the number of n-qubit states to 2 -3 =
6 in total. To this end, we start with two copies |zg) |0)|1), one which
goes into the block By and one into B,, obtaining |f(z)) |0) |f'(x0)) and
|9(20)) 10) |¢'(z0)) . We then apply the sum, the upper array being given by
Eq. (8). We then assume that it is possible (and convenient) to re-initialize
the lower array of the 3 remaining states to |zo) [0)|1). This can be sent
into the block By, getting |h(zo)) |0) |h'(z0)), which can be summed with the
previous outcome, obtaining (in the upper array) the desired result of Eq.

@).

The question if 9 (or in general 3k) states is faster or slower than 6 states
in which a re-initialization of one of the states is applied, is open and depends
on future implementations. Probably, for £ large enough the second paths
becomes favorable. Yet, as a matter of principle, it is possible to perform
the sum of k functions by using 6 n-qubit states. Very similar arguments
hold also in the case of the calculation of the derivative of the product of &
functions.

Finally, once these operators are implemented on a quantum computer, we
can compute with arbitrary precision (limited only by the quantum machine
precision, i.e. the number of qubits) the derivative of any combination of the
functions with the following algorithm:
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Algorithm ¢AD(|s),n, m)

Require: [s) = |xg) ® |0) ® |1) is a valder state and each sub-state is a
n-qubit register with m qubits for its integer part.

1. Determine the components of the computational graph for the Algo-
rithmic Differentiation.

2. Calculate the number of qubits needed.
3. For each component:

(a)

(b) apply the component specific AD(-) operator
()
(d)

apply the transfer operator C

apply the reset procedure on the second n-qubit state

return the valder object
4. If arithmetic-operations are involved, for each operation:

(a) apply the component specific gAD operator

4.1 An example: f(z) =z - cos(logx)
The computational graph of the function f(z) = x-cos(log x) is shown below:

Sy - 83 = x - cos(log x)

/N

S54=7 s3 = cos(sa)
sg = log(s1)
S1=2
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Based on this graph, let us define the quantum states to calculate the
derivative of this function.

® [s51) = [z0) ©0) ® [1) = [valy) ® |0) ® [dery)

e |sy) = ADlog(|s1))

e |s3) = ADcos(]s2))

e |s,) = ADtimes(|sy), |s3))

Let us now explicitly calculate the wvalder states which will lead to the
derivative of the function f(z) = z-cos(logz). Using the definition of ADlog
we have for |ss):

|s3) = ADlog([s1))

1
= |logwaly) ®(0) ® ‘— . der1>
valy

_ |1ogx>®|o>®'xio-1>

lvaly) ® |0) @ |ders)

For |s3), using the definition of ADcos:

|s3) = ADcos(|s2))
= |cos(valy)) ® |0) @ |— sin(valy) - ders)
= |cos(logzp)) ® |0) ® ‘— sin(log x) - xio>

lvals) ® |0) ® |ders)
Finally, using the definition of ADtimes for the states |s3) and |s4) we get:
gAD [z - cos(logz)] = |f') = ADtimes(|s4),]|s3))
= |valy - valz) ® |0) ® |dery - vals + valy - ders)
1 - cos(log xg) + xg - <— sin(log x) - i)>

= |z - cos(logzp)) ® |0) ®
Zo

= |z - cos(log zp)) ® |0) ® |cos(log zg) — sin(log o))

The state | f’) contains then the value of the function and of its derivative,
both valuated at point x;.
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5 Conclusions

This paper presents a translation of the algorithmic differentiation procedure
for a classical computer to a quantum computer and poses the basis for
the implementation of a quantum algorithmic differentiation framework for
scientific computing.

We first defined the wvalder quantum state which is the input state to
calculate the value of a function and its derivative in a given point. The
valder state is in fact a quantum floating point representation of the point
at which we need to calculate the function and its derivative, say xy. This
state is composed by 3 n-qubit states: the first representing the value xg, the
second representing the value 0, and finally the third representing the value
1. The latter two states are needed to calculate the value of the derivative
of the function in the quantum algorithmic differentiation framework.

We then defined the operators and procedures necessary to calculate the
function and the derivative in xy. The transfer or copy operators copies the
first n-qubit state onto the second, the reset procedure sets the second n-
qubit state to represent the value 0 and finally the AD operator is built in
order to compute the value of a primitive function and its derivative. We
also showed two possible solutions for the reset procedure, one fully quantum
and the other applicable in hybrid systems, with the help of a classical bit.

In conclusion, based on the existing definitions of primitive functions
on a quantum computer, we outlined the algorithm to compute the value
of a composite function and its derivative at a given point, based on the
computational graph of the function itself.

We acknowledge the practical complexity of the current implementation
of this algorithm due to the large number of qubits needed to represent the
value of functions and derivatives in a point, however we do see the po-
tential of implementing this quantum algorithmic differentiation framework
into currently available algorithms for scientific computing, optimization and
machine learning on quantum computers.
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