

 AWS Braket:

 A quantum computing

 cloud service

The use of quantum computers for

practical purposes, from data

science to logistic and finance

applications, is becoming reality.

Several parties are building

quantum computers and making

them available to the businesses

and organizations.

Together with the improvements on

the quantum hardware, also the

software to run codes on quantum

chips is in constant development.

This article presents an overview of

Amazon Web Services (AWS)

Braket, a cloud service to run

quantum computations on both

quantum annealers and universal-

gate quantum computer

architectures.

Giuseppe Colucci

info.quantumquants@gmail.com

AWS Braket

Amazon Web Services (AWS) Braket1 is

a cloud service part of the AWS

platform which allows the user to

perform quantum computations on

actual quantum devices.

This service is named after the bra-ket

(or Dirac) notation of quantum

mechanics to represent the state of

quantum particles.

AWS Braket gives access to multiple

quantum device architectures, from

quantum annealers to universal-gate

model Quantum Processing Units

(QPUs).

AWS Braket includes a Jupyter

Notebook development environment

as well as a python API interface for

the user to build quantum circuits and

algorithms, test them on quantum

circuit simulators, and run them on

different quantum hardware or

simulators.

1
 https://aws.amazon.com/braket/

mailto:info.quantumquants@gmail.com
https://aws.amazon.com/braket/

To access the AWS Braket service, one

must be signed in to the AWS platform.

In the ‘All Services’ view one can

select the Braket service under the

section Quantum Technologies.

The AWS Braket service has three main

sections or tabs (Figure 1): devices,

notebooks and tasks.

Figure 1: AWS Braket Service tabs.

The ‘Devices’ tab shows the available

QPUs and quantum circuit simulators.

At the time of writing, the following

devices are included:

 D-Wave Advantage system 1.1: a

quantum annealer based on

superconducting qubits with 5000+

qubits.

 D-Wave DW 2000Q 6: same as the

above, but with 2048 qubits.

 IonQ: Universal gate-model QPU

based on trapped ions (11 qubits).

 Rigetti Aspen 8: Universal gate-

model QPU based on

superconducting qubits (31 qubits).

 Braket SV1 Simulator: a quantum

computer simulator with 34 qubits.

The ‘Notebooks’ tab includes the

notebook software development kit

(SDK) environment, where the user can

create a notebook instance which

contains several examples of quantum

circuits, algorithms and prototypes for

real applications, including well-known

algorithms (Grover, Quantum Fourier

Transform, etc.), portfolio optimization,

molecule simulation, signal noise

analysis on a quantum device, etc.

The notebook SDK allows for creating

new notebooks, cloning the existing

ones and running them on quantum

devices or simulators.

Finally, the tasks from Notebook or API

runs are visible in the ‘Tasks’ tab. The

results of each run are stored

(generally in JSON format) into a folder

on the S3 storage of the cloud

(Amazon Simple Storage Service or

Amazon S3).

Example: using the most powerful

quantum annealer in the world.

Disclaimer: the development and

usage of AWS services is not free of

charge and associated to costs as

described at:

https://aws.amazon.com/pricing/

Quantum Quants shall not be

responsible for any cost or loss

whatsoever sustained by any person

who relies on the information

presented in this article.

One of the most interesting

applications of current and future

quantum computers is the solution of

optimization problems.

Several optimization algorithms have

been developed for quantum

computers, with particular success in

solving quadratic optimization

problems with binary variables, called

https://aws.amazon.com/pricing/

Quadratic Unconstrained Binary

Optimization problems (QUBO)2.

Examples of such problems are the

“travelling salesman problem” and

“the job-shop problem”.

The most common quantum

computers used for solving QUBO

problems are D-Wave architectures3

which are available in the AWS Braket

service (both with 2048 and 5760 qubit

architectures). This quantum computer

uses the property of every physical

system to move towards its lowest

energy state (think about a mountain

stone rolling down to the valley).

Quantum annealing is a way of using

this property in quantum systems to

quickly converge to the optimal point

of a problem.

In quantum annealing we map a cost

function we want to optimize (e.g., a

likelihood function) to a quantum

computer function (called potential or

hamiltonian). The qubits will then

evolve towards the minimum of this

function via thermal fluctuations

(classical) and quantum fluctuations

(tunneling). These two different qubit

evolutions are sketched in Figure 2.

Figure 2: Quantum and Classical annealing evolutions.
Source: Biamonte (2017).

2
 These types of problems can be mapped to the

well-known Ising model used in physics for
describing ferromagnets.
3
 https://www.dwavesys.com/

The additional quantum fluctuations

available on a quantum computer

improve the performance in spanning

the solution space of the optimization

problem (i.e. decreases the chance to

end up in local minima).

Below, in Box 1, you can see an

example of such optimization

algorithm. In this case we use the API

of AWS Braket to run the code both on

a local simulator and on the D-Wave

Advantage QPU, which is (at the time

of writing) the most powerful quantum

annealer with 5760 qubits.

For the sake of simplicity, we choose a

very simple optimization problem

without an actual practical

application. In fact, we try to minimize

a simple quadratic function of three

variables. In general, when dealing

with use cases in real applications, the

number of variables involved

increases. In these cases, the most

difficult task is to define the mapping

between the problem space (e.g. the

minimization of the risk in a portfolio of

financial assets) and the quantum

device space (QUBO or Ising-model

like).

We can state the problem of Box 1 as:

Find the minimum of the function 𝑓 of

binary variables (𝑥, 𝑦, 𝑧):

𝑓(𝑥, 𝑦, 𝑧) = −3𝑥 − 𝑦 + 𝑧 + 2𝑥𝑦 + 6𝑥𝑧 + 𝑦𝑧

Classically, the simplest approach to

solve this problem is to evaluate the

function in all possible triplets (𝑥, 𝑦, 𝑧).

However, with increasing number of

variables, this procedure is not efficient

and different algorithms must be used.

https://www.dwavesys.com/

Box 1: Find the minimum of a function on D-Wave Advantage in AWS Braket.

import relevant AWS and D'Wave modules

import boto3

from braket.ocean_plugin import BraketDWaveSampler

from dwave.system.composites import EmbeddingComposite

from dwave_qbsolv import QBSolv

import dimod

The name of the bucket where to store the results.

Make sure you created this bucket in S3

my_bucket = "YOUR_BUCKET_NAME"

the name of the folder in the bucket

my_prefix = "YOUR_FOLDER_NAME"

s3_folder = (my_bucket, my_prefix)

Set sampler to be used for the optimization using BraketSampler

sampler = BraketDWaveSampler(s3_folder, 'arn:aws:braket:::device/qpu/d-

wave/Advantage_system1')

We now need to create a matrix Q to map the minimization problem of the

function to the space of the QPU. The mapping procedure is called Embedding.

The function EmbeddingComposite allows for automatically map the problem

to the structure of the solver (QPU).

embedded_sampler = EmbeddingComposite(sampler)

The problem of the function must be mapped to a QUBO functional form,

i.e. a quadratic function in the variables X=(x,y,z), which in matrix notation

can be expressed as:

f(x,y,z) = f(X) = X^T.Q.X

Since we deal with binary variables, the linear terms correspond to quadratic

terms in the same variable, e.g. x = x^2, therefore the main diagonal of

matrix Q will contain the linear terms, while the off-diagonal terms correspond

to the mixed variable terms (or in physical terms the “interaction terms”):

Q = {(x,x):-3, (x,y): 2, (x,z): 6,

(y,y):-1, (y,z): 1,

(z,z): 1}

The matrix Q is clearly symmetric, therefore only one side of the off-diagonal

terms is shown.

linear = {'q0': -3, 'q1': -1, 'q2': 1} # linear coefficients

quadratic = {('q0', 'q1'): 2, ('q0', 'q2'): 6, ('q1', 'q2'): 1} # quadratic

coefficients

Define variables for building the binary quadratic model (BQM) for the QUBO.

- offset: constant energy offset associated with the binary quadratic model.

- vartype: specify whether the variables are binary or spin.

offset = 0.0

vartype = dimod.BINARY

Define the BQM

bqm = dimod.BQM(linear, quadratic, offset, vartype)

response = embedded_sampler.sample(bqm)

print('Quantum solution:')

print('samples = '+str(list(response.samples())))

print('energies = '+str(list(response.data_vectors['energy'])))

print('counts = '+str(list(response.data_vectors['num_occurrences'])))

Snippet 1: This code calculates the minimum energy of the system associated to the function f(x,y,z).

The solution is {'x': 1, 'y': 0, 'z': 0} and the function value in this point is -3.

For testing and prototyping, it is recommended to use the local simulator. For more information, please refer to the Ocean

documentation of QBSolv (https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/index.html).

Disclaimer: the development and usage of AWS services is not free of charge and associated to costs as described at:

https://aws.amazon.com/pricing/

Quantum Quants shall not be responsible for any cost or loss whatsoever sustained by any person who relies on the information

presented in this article.

https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/index.html
https://aws.amazon.com/pricing/

Conclusions

The AWS Braket service allows for an easy build, test and run of algorithms and

circuits on several quantum devices and simulators. The embedding in Python (via

notebook SDK and API) allows for using all needed python modules on the side of

the quantum computation.

AWS Braket also allows the user to run their code on the most recent quantum

annealer, the D-Wave Advantage, which is the (currently) most powerful and

connected quantum computer in the world4.

At Quantum Quants we built several prototypes for practical solutions from finance

(e.g. portfolio optimization) to data science and logistics (crane assignment and

scheduling).

Currently, we also investigate algorithms and implementations for the calculation of

molecules and compounds. Together with the investigation on the AWS Braket

platform and on D-Wave architecture, at Quantum Quants we also investigate

possibilities on the more versatile universal-gate model architecture and also

alternatives to the AWS platform, including the IBM Quantum Experience framework5

the Google framework of Tensorflow-quantum6.

About Quantum Quants

Quantum Quants helps businesses to get insights on applications of quantum

computing to the financial industry, data science and supply-chain.

Giuseppe Colucci is a PhD in theoretical physics. He is a senior ALM specialist at de

Volksbank N.V. and owner of Quantum Quants. He is an expert on quantum theory,

data science models and optimization. He developed interest for quantum

computing since his Theoretical Physics studies and is currently active in publishing

academic papers on applications of quantum computing.

Quantum Quants, Rotterdam (The Netherlands)

email: info.quantumquants@gmail.com

This communication contains general information only, and Quantum Quants is not by means of this paper rendering

professional advice or services. The analysis, views and opinions presented in this paper are our own and do not

represent the opinions of any firm, but Quantum Quants. Before making any decision or taking any action that may

affect your finances or your business, you should consult a qualified professional adviser. Quantum Quants shall not

be responsible for any loss whatsoever sustained by any person who relies on this information.

©2020 Quantum Quants

4
 https://www.dwavesys.com/d-wave-two%E2%84%A2-system

5
 https://quantum-computing.ibm.com/

6
 https://www.tensorflow.org/quantum

mailto:info.quantumquants@gmail.com
https://www.dwavesys.com/d-wave-two%E2%84%A2-system
https://quantum-computing.ibm.com/
https://www.tensorflow.org/quantum

