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The use of quantum computers for 

practical applications, from physics 

to finance, is becoming a reality.  

Several parties are building 

quantum computers and making 

them available to the public for 

calculations. 

Together with the quantum 

hardware, also the software to run 

codes on quantum computers is 

being developed. 

This article presents an overview of 

the applications of Qiskit, an open-

source framework to run quantum 

computations in Python. 
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IBM Q Experience 

The IBM Q Experience1 is an online 

platform to explore the possibilities of 

quantum computing with simulators 

and real devices (prototypes) 

developed by IBM.  

Once logged in, the interface is very 

intuitive. The “Quantum Lab” includes 

a graphical way to build circuits, the 

Quantum Composer, by drag-and-

dropping several elements (quantum 

gates) which can be applied to the 

qubits. The obtained circuits can be 

run both on a simulator and on a real 

IBM quantum computer.  

In Figure 1, an example of a simple 

quantum circuit is given, which is used 

to create an entangled state starting 

from two non-entangled qubits. 
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However, the drag-and-drop 

approach is not the most effective one 

when the circuits become more and 

more complex and should be used for 

practical applications. For this reason, 

IBM introduced an open-source 

software development kit (SDK) for 

quantum computing, Qiskit2 

(pronounced “kiss-kit”), to embed the 

quantum computing operations in 

Python.  

Qiskit 

Qiskit can be installed locally as a 

common Python package (e.g. with 

pip or conda). At the time of writing, 

python 3.5 or higher is required.  

Once installed, Qiskit allows building 

quantum circuits, running them locally 

on a simulator or even testing your 

own quantum circuits on a real IBM 

quantum computer. For the latter, you 

must be registered on IBM Q 
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Experience and need to create an API 

token to be saved locally3. 

The simple circuit in Figure 1 can be run 

locally from Python by means of the 

code in Box 1. The code might look 

involved to run such a simple circuit, 

however when implementing quantum 

algorithms involving a large set of 

gates, the advantages of the SDK 

become clear. 

Possible applications 

Qiskit can be used for both 

educational, research and practical 

purposes. The limitation is given by the 

qubits available on the IBM Q 

Experience, but research for building 

quantum computing circuits for 

practical applications is already a 

reality. 

Qiskit can help the development of 

quantum gates and circuits, 

multipurpose quantum algorithms for 
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practical applications (e.g. finance 

and data science), quantum 

hardware testing, etc. We at Quantum 

Quants are currently investigating the 

possibilities of implementing machine 

learning and optimization algorithms. 

 

 

 

  

Box 1: Prepare an entangled state with Qiskit 

# importing Qiskit methods 

from qiskit import QuantumCircuit, execute, Aer, IBMQ 

from qiskit.providers.ibmq import least_busy 

from qiskit.tools.monitor import job_monitor 

from qiskit.visualization import plot_histogram 

# NOTE: to use the real IBM quantum chip, you need to be registered to 

# the IBM quantum experience website: https://quantum-computing.ibm.com/ 

# Once registered, one has to save locally the credentials with the command: 

# >>> IBMQ.save_account('YOUR_API_TOKEN') 

# This API token can be found in the account settings: https://quantum-

computing.ibm.com/account 

 

 

if __name__ == "__main__": 

    # Create the circuit with 2 qubits 

    qc = QuantumCircuit(2) 

    # Add a Hadamard gate on the first qubit 

    qc.h(0) 

    # Add a CNOT between the first and second qubit to entangle them 

    qc.cx(0, 1) 

    # Measure qubits 

    qc.measure_all() 

 

    # Draw the circuit 

    qc.draw('mpl') 

 

    # Run the circuit on the local simulator 

    backend = Aer.get_backend('qasm_simulator') 

    shots = 1024 

    results = execute(qc, backend=backend, shots=shots).result() 

    counts = results.get_counts() 

    plot_histogram(counts) 

 

    # Run on a real quantum computer 

    # Load the saved IBMQ accounts 

    IBMQ.load_account() 

    provider = IBMQ.get_provider(hub='ibm-q') 

    # Get the least busy backend device with less than or equal to 2 

    backend = least_busy(provider.backends(filters=lambda x: 

      x.configuration().n_qubits >= 2 

                                           and not x.configuration().simulator 

                                           and x.status().operational == True)) 

 

    print("least busy backend: ", backend) 

 

    shots = 2048 

    job = execute(qc, backend=backend, shots=shots, optimization_level=3) 

    job_monitor(job) 

 

    counts = job.result().get_counts() 

    plot_histogram(counts) 

 

 

This code starts from two qubits in the |0⟩ state and transforms them to the maximally entangled 

state 
1

√2
(|00⟩ + |11⟩). The drawing of the circuit is shown in Figure 2. 



  

 

Figure 2: Quantum circuit for preparing a maximally entangled state. 

When running on the simulator (Figure 3), the code outputs the state as predicted, with a high 

accuracy: the probabilities (or square amplitudes) of the states |00⟩ and |11⟩ are not exactly ½ due 

to the finite number of shots. The result should converge to ½ in the limit of large numbers. 

 

Figure 3: Local simulator results. 

Finally, Figure 4 shows the results after running the circuit on an actual quantum device (for this 

simulation, the least busy backend used was ibmq_vigo). The results show a small however non-zero 

probability for the states |01⟩ and |10⟩. This is the consequence of decoherence and noise in a real 

quantum computer, which is one of the main difficulties which is currently being addressed to build 

stable quantum computing devices. 

 

Figure 4: Real device output. 

 



Quiskit already offers several tutorials and an interactive environment to learn the 

basics and explore the possibilities and applications to several fields (e.g. chemistry, 

finance, optimization, etc.). Tutorials are provided in the jupyter notebook format4 

and the user can also create and store his/her own notebooks. The Qiskit community 

is also very active and everyone can contribute to it via Github5.  

Our goal at Quantum quants is to provide the knowledge and necessary means to 

develop your own Qiskit suite of codes and notebooks for researching the possible 

applications of quantum computing to your field. 

 

Conclusions 

The Qiskit framework allows for an easy implementation of algorithms that can be run 

on a quantum computer. The embedding in python allows for using many libraries on 

the side of the quantum computation. Qiskit can then be used to research, create 

and implement hybrid algorithm which use the versatility of python libraries like 

pandas or keras with the calculation on a simulator or a real quantum device.  

At Quantum Quants we implemented and built several algorithms, from historically 

relevant ones like the Simon’s and Shor’s algorithms, to more practical solutions to 

calculate correlations of stochastic processes or to build a quantum layer in a neural 

network architecture. 

Currently, we also investigate algorithms and implementations for the calculation of 

molecules and compounds on a quantum computer. However this requires 

additional quantum computational power which cannot be achieved with the 

limited number of qubits provided on the IBM Q Experience platform. Therefore we 

look for alternatives, including the Google framework of Tensorflow-quantum6, the 

AWS Amazon Braket7 service and the Leap2 framework of D-Wave8. 
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About Quantum Quants  

Quantum Quants helps companies to get insights on applications of quantum 

computing to the financial industry and data science.  

Giuseppe Colucci (founder) is a PhD in theoretical physics and ALM specialist at de 

Volksbank N.V. He is an expert on thermal quantum field theory, risk models and ALM 

strategy. He developed interest for quantum computing since his master degree in 

Theoretical Physics and is currently active in publishing academic papers on 

applications of quantum computing to finance and data science. 
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