

 Qiskit:

 quantum computing

 in Python

The use of quantum computers for

practical applications, from physics

to finance, is becoming a reality.

Several parties are building

quantum computers and making

them available to the public for

calculations.

Together with the quantum

hardware, also the software to run

codes on quantum computers is

being developed.

This article presents an overview of

the applications of Qiskit, an open-

source framework to run quantum

computations in Python.

Giuseppe Colucci

info.quantumquants@gmail.com

IBM Q Experience

The IBM Q Experience1 is an online

platform to explore the possibilities of

quantum computing with simulators

and real devices (prototypes)

developed by IBM.

Once logged in, the interface is very

intuitive. The “Quantum Lab” includes

a graphical way to build circuits, the

Quantum Composer, by drag-and-

dropping several elements (quantum

gates) which can be applied to the

qubits. The obtained circuits can be

run both on a simulator and on a real

IBM quantum computer.

In Figure 1, an example of a simple

quantum circuit is given, which is used

to create an entangled state starting

from two non-entangled qubits.

1
 https://quantum-computing.ibm.com/

mailto:info.quantumquants@gmail.com
https://quantum-computing.ibm.com/

However, the drag-and-drop

approach is not the most effective one

when the circuits become more and

more complex and should be used for

practical applications. For this reason,

IBM introduced an open-source

software development kit (SDK) for

quantum computing, Qiskit2

(pronounced “kiss-kit”), to embed the

quantum computing operations in

Python.

Qiskit

Qiskit can be installed locally as a

common Python package (e.g. with

pip or conda). At the time of writing,

python 3.5 or higher is required.

Once installed, Qiskit allows building

quantum circuits, running them locally

on a simulator or even testing your

own quantum circuits on a real IBM

quantum computer. For the latter, you

must be registered on IBM Q

2
 https://qiskit.org/

Experience and need to create an API

token to be saved locally3.

The simple circuit in Figure 1 can be run

locally from Python by means of the

code in Box 1. The code might look

involved to run such a simple circuit,

however when implementing quantum

algorithms involving a large set of

gates, the advantages of the SDK

become clear.

Possible applications

Qiskit can be used for both

educational, research and practical

purposes. The limitation is given by the

qubits available on the IBM Q

Experience, but research for building

quantum computing circuits for

practical applications is already a

reality.

Qiskit can help the development of

quantum gates and circuits,

multipurpose quantum algorithms for

3
 This API token can be found in the settings:

https://quantum-computing.ibm.com/account

https://qiskit.org/
https://quantum-computing.ibm.com/account

practical applications (e.g. finance

and data science), quantum

hardware testing, etc. We at Quantum

Quants are currently investigating the

possibilities of implementing machine

learning and optimization algorithms.

Box 1: Prepare an entangled state with Qiskit

importing Qiskit methods

from qiskit import QuantumCircuit, execute, Aer, IBMQ

from qiskit.providers.ibmq import least_busy

from qiskit.tools.monitor import job_monitor

from qiskit.visualization import plot_histogram

NOTE: to use the real IBM quantum chip, you need to be registered to

the IBM quantum experience website: https://quantum-computing.ibm.com/

Once registered, one has to save locally the credentials with the command:

>>> IBMQ.save_account('YOUR_API_TOKEN')

This API token can be found in the account settings: https://quantum-

computing.ibm.com/account

if __name__ == "__main__":

 # Create the circuit with 2 qubits

 qc = QuantumCircuit(2)

 # Add a Hadamard gate on the first qubit

 qc.h(0)

 # Add a CNOT between the first and second qubit to entangle them

 qc.cx(0, 1)

 # Measure qubits

 qc.measure_all()

 # Draw the circuit

 qc.draw('mpl')

 # Run the circuit on the local simulator

 backend = Aer.get_backend('qasm_simulator')

 shots = 1024

 results = execute(qc, backend=backend, shots=shots).result()

 counts = results.get_counts()

 plot_histogram(counts)

 # Run on a real quantum computer

 # Load the saved IBMQ accounts

 IBMQ.load_account()

 provider = IBMQ.get_provider(hub='ibm-q')

 # Get the least busy backend device with less than or equal to 2

 backend = least_busy(provider.backends(filters=lambda x:

 x.configuration().n_qubits >= 2

 and not x.configuration().simulator

 and x.status().operational == True))

 print("least busy backend: ", backend)

 shots = 2048

 job = execute(qc, backend=backend, shots=shots, optimization_level=3)

 job_monitor(job)

 counts = job.result().get_counts()

 plot_histogram(counts)

This code starts from two qubits in the |0⟩ state and transforms them to the maximally entangled

state
1

√2
(|00⟩ + |11⟩). The drawing of the circuit is shown in Figure 2.

Figure 2: Quantum circuit for preparing a maximally entangled state.

When running on the simulator (Figure 3), the code outputs the state as predicted, with a high

accuracy: the probabilities (or square amplitudes) of the states |00⟩ and |11⟩ are not exactly ½ due

to the finite number of shots. The result should converge to ½ in the limit of large numbers.

Figure 3: Local simulator results.

Finally, Figure 4 shows the results after running the circuit on an actual quantum device (for this

simulation, the least busy backend used was ibmq_vigo). The results show a small however non-zero

probability for the states |01⟩ and |10⟩. This is the consequence of decoherence and noise in a real

quantum computer, which is one of the main difficulties which is currently being addressed to build

stable quantum computing devices.

Figure 4: Real device output.

Quiskit already offers several tutorials and an interactive environment to learn the

basics and explore the possibilities and applications to several fields (e.g. chemistry,

finance, optimization, etc.). Tutorials are provided in the jupyter notebook format4

and the user can also create and store his/her own notebooks. The Qiskit community

is also very active and everyone can contribute to it via Github5.

Our goal at Quantum quants is to provide the knowledge and necessary means to

develop your own Qiskit suite of codes and notebooks for researching the possible

applications of quantum computing to your field.

Conclusions

The Qiskit framework allows for an easy implementation of algorithms that can be run

on a quantum computer. The embedding in python allows for using many libraries on

the side of the quantum computation. Qiskit can then be used to research, create

and implement hybrid algorithm which use the versatility of python libraries like

pandas or keras with the calculation on a simulator or a real quantum device.

At Quantum Quants we implemented and built several algorithms, from historically

relevant ones like the Simon’s and Shor’s algorithms, to more practical solutions to

calculate correlations of stochastic processes or to build a quantum layer in a neural

network architecture.

Currently, we also investigate algorithms and implementations for the calculation of

molecules and compounds on a quantum computer. However this requires

additional quantum computational power which cannot be achieved with the

limited number of qubits provided on the IBM Q Experience platform. Therefore we

look for alternatives, including the Google framework of Tensorflow-quantum6, the

AWS Amazon Braket7 service and the Leap2 framework of D-Wave8.

4
 https://quantum-computing.ibm.com/jupyter

5
 https://github.com/Qiskit/

6
 https://www.tensorflow.org/quantum

7
 https://aws.amazon.com/braket/

8
 https://www.dwavesys.com/take-leap

https://quantum-computing.ibm.com/jupyter
https://github.com/Qiskit/
https://www.tensorflow.org/quantum
https://aws.amazon.com/braket/
https://www.dwavesys.com/take-leap

About Quantum Quants

Quantum Quants helps companies to get insights on applications of quantum

computing to the financial industry and data science.

Giuseppe Colucci (founder) is a PhD in theoretical physics and ALM specialist at de

Volksbank N.V. He is an expert on thermal quantum field theory, risk models and ALM

strategy. He developed interest for quantum computing since his master degree in

Theoretical Physics and is currently active in publishing academic papers on

applications of quantum computing to finance and data science.

Quantum Quants

Rotterdam (The Netherlands)

email: info.quantumquants@gmail.com

This communication contains general information only, and Quantum Quants is not by means of this paper rendering

professional advice or services. The analysis, views and opinions presented in this paper are our own and do not

represent the opinions of any firm, but Quantum Quants. Before making any decision or taking any action that may

affect your finances or your business, you should consult a qualified professional adviser. Quantum Quants shall not

be responsible for any loss whatsoever sustained by any person who relies on this information.

©2020 Quantum Quants

mailto:info.quantumquants@gmail.com

